Tags


Click a tag to remove it from package

Edit Species Groups of Package

Edit Parameter of Package

Edit DOI Package

Choose a project for this package

FRED
  • Contact
  • GDPR policy
  • Imprint
  • About
  • Sign Up
  • Login
  • SEARCH
  • Search and find
  • Packages
  • Map
  • By Category ...
    • Study sites
    • Sampling locations
    • Parameters
    • Sampling types
    • Species groups
    • Current DOIs

800 Regional EPTO Data from Li river, Qiantang river, Ertix river, Wei river and Lancang river from NAU Insect Taxonomy and Aquatic Insect lab

DOI Info:

  • DOI: 10.18728/igb-fred-800.4
  • How to cite: Beixin Wang, Kai Chen (2022-11-15 ) Regional EPTO Data from Li river, Qiantang river, Ertix river, Wei river and Lancang river from NAU Insect Taxonomy and Aquatic Insect lab. IGB Leibniz-Institute of Freshwater Ecology and Inland Fisheries. dataset. https://doi.org/10.18728/igb-fred-800.4
  • Previous DOI version :10.18728/igb-fred-733.3
  • DOI history

    Date DOI PackageId Note
    2022-05-0310.18728/igb-fred-697.0697
    2022-07-0410.18728/igb-fred-731.1731
    2022-07-0410.18728/igb-fred-732.2732
    2022-07-0410.18728/igb-fred-733.3733
    2022-11-1510.18728/igb-fred-800.4800this package latest
Title
Regional EPTO Data from Li river, Qiantang river, Ertix river, Wei river and Lancang river from NAU Insect Taxonomy and Aquatic Insect lab
Sampling interval
Irregular Interval
Description

Regional EPTO Data from Li river, Qiantang river, Ertix river, Wei river and Lancang river from NAU Insect Taxonomy and Aquatic Insect lab

 

Study site: China. Authors: Beixin Wang & Kai Chen. Species names and sampling days available upon communication with the authors.

 

Contact details:

Beixin Wang. E-mail: wangbeixin@njau.edu.cn. ORCID: https://orcid.org/0000-0002-5253-8799. Affiliation: Nanjing Agricultural University.

Kai Chen. E-mail: ckai2005@gmail.com. ORCID: https://orcid.org/0000-0002-5332-5920. Affiliation: Nanjing Agricultural University.

 

 

 

Coordinates of the bounding box (ulx, uly, lrx, lry): 86.22106, 48.76785, 120.33455, 21.23354

Centroid coordinates (x,y): 107.520757,27.832533

Number of records: 3214

 

The dataset includes records in areas: 

Not protected on the observation date (0)

Protected on the observation date (1)

using the November 2022 version of the Protected Planet WDPA WD-OECM dataset 

    (Protected Planet: World Database on Protected Areas (WDPA) 

    and World Database on Other Effective Area-based Conservation Measures (WD-OECM), UNEP-WCMC and IUCN, 2022). 

    Please see publication for further information.

 

Freshwater Ecoregions of the World (FEOW, Abell et al., 2008) covered: 603,636,726,763,766

 

 

Taxonomic focus of the study: All benthic community

 

Survey methods: Surber net and/or D-frame kick or dip net

 

Species Groups
Study site
_global
GeoNode references

GeoNode layers

  • Regional_EPTO_Data_from_NAU_Insect_Taxonomy_a
Contact
Afroditi Grigoropoulou
Licence for data
All rights reserved. Please send a request to Afroditi Grigoropoulou if you like to use this data. Mind our data policy: IGB Data Policy

Metadata files

TitleUpload dateFiletypeLicenceActions
Column_explanation.pdf15. Nov. 2022 15:32.pdf Download

Data files (e.g. excel)

TitlecreatedFiletypeActions
Regional_EPTO_Data_from_Li_river,_Qiantang_river,_Ertix_river,_Wei_river_and_Lancang_river_from_NAU_Insect_Taxonomy_and_Aquatic_Insect_lab.csv 15. Nov. 2022 15:31 datatable: .csv Download

Machine Readable Metadata Files

FRED provides all metadata of this package in a maschine readable format. There is a pure XML file and one EML file in Ecological Metadata Language. Both files are published under the free CC BY 4.0 Licence.

  • Regional_EPTO_Data_from_Li_river,_Qiantang_river,_Ertix_river,_Wei_river_and_Lancang_river_from_NAU_Insect_Taxonomy_and_Aquatic_Insect_lab.xml
  • Regional_EPTO_Data_from_Li_river,_Qiantang_river,_Ertix_river,_Wei_river_and_Lancang_river_from_NAU_Insect_Taxonomy_and_Aquatic_Insect_lab.eml

You are about to leaving FRED and visting a third party website. We are not responsible for the content or availability of linked sites.

To remain on our site, click Cancel.

Parsing data File

Estimated Time:

Why does it take so much time?

While parsing a file, the database has to perform various tasks, some of them needs a lot of CPU and memory for larger files.

  • preprocessing: means automatic detection of headlines, table body, format values or csv-separators
  • copying: means read the file cell by cell and copy all elements to the database. During this format settings can be calculated (for example iso-time)
  • analyzing: check out for different data types (can be time, numeric or text)