Tags


Click a tag to remove it from package

Edit Species Groups of Package

Edit Parameter of Package

Edit DOI Package

Choose a project for this package

FRED
  • Contact
  • GDPR policy
  • Imprint
  • About
  • Sign Up
  • Login
  • SEARCH
  • Search and find
  • Packages
  • Map
  • By Category ...
    • Study sites
    • Sampling locations
    • Parameters
    • Sampling types
    • Species groups
    • Current DOIs

850 Großer Plöner See Thermistorkette mit Sauerstoff

Title
Großer Plöner See Thermistorkette mit Sauerstoff
Period
2020-06-21 ongoing
Sampling interval
30 mins
Description

Dataset of a thermistor chain with 10-11 temperature and 3-6 oxygen measurements.

Species Groups
Study site
Großer Plöner See
Sampling types
surface water
Sampling locations
Tiefste Stelle Gr. Plöner See
location
54.095520586924586, 10.40587234470877
location
type
state
code
description

Tiefste Stelle 56m

Parameters

physics:

water temperature
name
water temperature
description

determination by temperature-probe

synonyms
water temp, Wassertemperatur

chemistry:

O, oxygen concentration
name
O, oxygen concentration
description

determination by oxygen-probe

synonyms
Sauerstoffkonzentration
O, oxygen saturation
name
O, oxygen saturation
description

determination by oxygen-probe

synonyms
Sauerstoffsättigung
Contact
Sylvia Jordan
Licence for data
All rights reserved. Please send a request to Sylvia Jordan if you like to use this data. Mind our data policy: IGB Data Policy

Metadata files

TitleUpload dateFiletypeLicenceActions
PLÖ_T-O2-chain_metadata_en.pdf03. Nov. 2023 13:42.pdf Download
PLÖ_T-O2-Messkette_Metadata_de.pdf03. Nov. 2023 13:42.pdf Download

Machine Readable Metadata Files

FRED provides all metadata of this package in a maschine readable format. There is a pure XML file and one EML file in Ecological Metadata Language. Both files are published under the free CC BY 4.0 Licence.

  • Großer_Plöner_See_Thermistorkette_mit_Sauerstoff.xml
  • Großer_Plöner_See_Thermistorkette_mit_Sauerstoff.eml

You are about to leaving FRED and visting a third party website. We are not responsible for the content or availability of linked sites.

To remain on our site, click Cancel.

Parsing data File

Estimated Time:

Why does it take so much time?

While parsing a file, the database has to perform various tasks, some of them needs a lot of CPU and memory for larger files.

  • preprocessing: means automatic detection of headlines, table body, format values or csv-separators
  • copying: means read the file cell by cell and copy all elements to the database. During this format settings can be calculated (for example iso-time)
  • analyzing: check out for different data types (can be time, numeric or text)