‹ › ×

    FRED
    • Contact
    • GDPR policy
    • Imprint
    • About
    • Sign Up
    • Login
    • SEARCH
    • Search and find
    • Packages
    • Map
    • By Category ...
      • Study sites
      • Sampling sites
      • Parameters
      • Sampling types
      • Species groups
      • Current DOIs

    725 Global EPTO Database

    Title
    Global EPTO Database
    Description

    Comprehensive table including all the occurrence records of the Global EPTO Database. 

     

    Main type of variables contained: WGS84 geo-referenced records of EPTO genera globally. Each record is attributed to the corresponding drainage basin and sub-catchment based on the high-resolution Hydrography90m dataset and is accompanied by the elevation value of its location based on the MERIT Hydro Digital Elevation Model. 

     

    Spatial location and grain: The database covers the global spatial extent, with 86% of the observation records having coordinates with at least four decimal digits in the WGS84 coordinate reference system. 

     

    Time period and grain: Sampling years span from 1951 to 2021. 99% of the records have information on the year of the observation, 95% on the year and month, while 94% have a complete date, including the day of observation. In particular cases, exact dates can be retrieved upon communication with the individual data contributors. 

     

    Major taxa and level of measurement: Ephemeroptera, Plecoptera, Trichoptera and Odonata at the genus taxonomic level. 

     

    50 datasets are included in the file 'Global_EPTO_Database.csv' (zipped). The link to each individual dataset is available in the 'Table_S1.pdf' and in the column ‘FRED_link-DOI’ within the dataset.

    For individual dataset visualisation, a link to https://geo.igb-berlin.de/ can be found in the field ‘GeoNode references’ in the FRED entry of each dataset.

     

    Authors: Afroditi Grigoropoulou, Raúl Acosta, Emmanuel Olusegun Akindele, Salman A. Al-Shami, Camino Fernández Aláez, Florian Altermatt, David Angeler, Giuseppe Amatulli, Francis Arimoro, Jukka Aroviita, Anna Astorga, Rafael Costa Bastos, Núria Bonada, Nikos Boukas, Cecilia Brand, Leandro Schlemmer Brasil, Vanessa Bremerich, Alex Bush, Qinghua Cai, Marcos Callisto, Lenize Batista Calvão, Fernando Geraldo Carvalho, Kai Chen, Paulo Vilela Cruz, Olivier Dangles, Russell Death, Xiling Deng, Eduardo Domínguez, David Dudgeon, Tor Erik Eriksen, Ana Paula Justino Faria, Maria João Feio, Mathieu Floury, Francisco García-Criado, Jorge García-Girón, Wolfram Graf, Peter Haase, Neusa Hamada, Fengzhi He, Jani Heino, Ralph Holzenthal , Kaisa-Leena Huttunen, Dean Jacobsen, Sonja C. Jähnig, Walter Jetz, Richard K. Johnson, Leandro Juen, Vincent Kalkman, Vassiliki Kati, Unique N. Keke, Ricardo Koroiva, Mathias Kuemmerlen, Simone Daniela Langhans, Raphael Ligeiro, Kris Van Looy, Alain Maasri, Richard Marchant, Jaime Garcia Marquez, Renato Tavares Martins, Adriano Melo, Leon Metzeling, Maria Laura Miserendino, Jannicke Moe, Carlos Molineri, Timo Muotka, Kaisa-Riikka Mustonen, Heikki Mykrä, Jeane Marcelle Cavalcante do Nascimento, Francisco Valente Neto, Peter Neu, Carolina Nieto, Steffen Pauls, Dennis R. Paulson, Blanca Rios-Touma, Marciel Elio Rodrigues, Fabio de Oliveira Roque, Juan Carlos Salazar Salinas, Astrid Schmidt-Kloiber, Deep Narayan Shah, José Orlando de Almeida, John P. Simaika, Tadeu Siqueira, Ram Devi Tachamo-Shah, Günther Theischinger, Ross Thompson, Jonathan Tonkin, Yusdiel Torres-Cambas, Colin Townsend, Eren Turak, Laura Twardochleb, Beixin Wang, Liubov Yanygina, Carmen Zamora and Sami Domisch

     

    All the metadata details are available in the FRED entries of the individual datasets.

    Keywords
    biodiversity, aquatic insects, Ephemeroptera, Plecoptera, Trichoptera, Odonata, observation records, global dataset
    Study site
    _global
    GeoNode references

    GeoNode maps

    • Datasets of the Global EPTO Database
    Contact
    Afroditi Grigoropoulou
    Licence for data
    All rights reserved. Please send a request to Afroditi Grigoropoulou if you like to use this data. Mind our data policy: IGB Data Policy

    Metadata files

    TitleUpload dateFiletypeLicenceActions
    Table_S1.pdf10. May. 2022 11:13.pdfODC-By Download
    Column_explanation.pdf03. May. 2022 15:43.pdfODC-By Download

    Data files (e.g. excel)

    TitlecreatedFiletypeActions
    Global_EPTO_Database.zip 10. May. 2022 10:59 datatable: .zip Download

    Machine Readable Metadata Files

    Title Upload dateFiletypeLicenseActions
    General_Metadata_Global_EPTO_Database.xml27. May. 2022 18:28xmlODC-By Download
    General_Metadata_Global_EPTO_Database.eml27. May. 2022 18:28emlODC-By Download

    You are about to leaving FRED and visting a third party website. We are not responsible for the content or availability of linked sites.

    To remain on our site, click Cancel.

    Parsing data File

    Estimated Time:

    Why does it take so much time?

    While parsing a file, the database has to perform various tasks, some of them needs a lot of CPU and memory for larger files.

    • preprocessing: means automatic detection of headlines, table body, format values or csv-separators
    • copying: means read the file cell by cell and copy all elements to the database. During this format settings can be calculated (for example iso-time)
    • analyzing: check out for different data types (can be time, numeric or text)