Tags


Click a tag to remove it from package

Edit Species Groups of Package

Edit Parameter of Package

Edit DOI Package

Choose a project for this package

FRED
  • Contact
  • GDPR policy
  • Imprint
  • About
  • Sign Up
  • Login
  • SEARCH
  • Search and find
  • Packages
  • Map
  • By Category ...
    • Study sites
    • Sampling locations
    • Parameters
    • Sampling types
    • Species groups
    • Current DOIs

55 Müggelsee Makrophyten Daten 2014-2017

Title
Müggelsee Makrophyten Daten 2014-2017
Period
2014-06-03 ongoing
Sampling interval
1 year
Description

The data were collected according to the procedure instructions: Phylib_verfahrensanleitung_seen_2014.

The data table heads are in german: "Tiefenstufe" means  depth layer.

Species Groups
Study site
Müggelsee
Sampling types
Macrophytes
Parameters

biology:

abundance
name
abundance
Contact
Sabine Hilt
Licence for data
All rights reserved. Please send a request to Sabine Hilt if you like to use this data. Mind our data policy: Lakebase Data Policy

Metadata files

TitleUpload dateFiletypeLicenceActions
Phylib_verfahrensanleitung_seen_2014.pdf19. Apr. 2018 13:52.pdf Download

Data files (e.g. excel)

TitlecreatedFiletypeActions
Müggelsee_2017.xlsx 19. Apr. 2018 13:53 datatable: .xlsx
Error: To access file, please get in touch with the contact person.

Machine Readable Metadata Files

FRED provides all metadata of this package in a maschine readable format. There is a pure XML file and one EML file in Ecological Metadata Language. Both files are published under the free CC BY 4.0 Licence.

  • Müggelsee_Makrophyten_Daten_2014-2017_.xml
  • Müggelsee_Makrophyten_Daten_2014-2017_.eml

You are about to leaving FRED and visting a third party website. We are not responsible for the content or availability of linked sites.

To remain on our site, click Cancel.

Parsing data File

Estimated Time:

Why does it take so much time?

While parsing a file, the database has to perform various tasks, some of them needs a lot of CPU and memory for larger files.

  • preprocessing: means automatic detection of headlines, table body, format values or csv-separators
  • copying: means read the file cell by cell and copy all elements to the database. During this format settings can be calculated (for example iso-time)
  • analyzing: check out for different data types (can be time, numeric or text)