‹ › ×

    FRED
    • Contact
    • GDPR policy
    • Imprint
    • About
    • Sign Up
    • Login
    • Data
    • Study sites
    • Sampling sites
    • Parameters
    • Sampling types
    • Map
    • Current DOIs

    45 Lake Constance Autotrophic Picoplankton Biomass

    Title
    Lake Constance Autotrophic Picoplankton Biomass
    Study site
    Lake Constance
    Parameters

    biology:

    abundance
    name
    abundance
    biomass
    name
    biomass
    description

    Plankton biomass

    Contact
    Ursula Gaedke
    Licence for data
    All rights reserved. Please send a request to Ursula Gaedke if you like to use this data. Mind our data policy: IGB Data Policy

    Metadata files

    TitelUpload dateFiletypeLicenceActions
    Autotrophic_picoplankton_documentation_for_Lake_Constance.pdf05. Jul. 2018 13:49.pdfODC-By Download
    General_MetadataLake_Constance_Autotrophic_Picoplankton_Biomass.xml12. Dec. 2019 21:05xmlODC-By Download
    General_MetadataLake_Constance_Autotrophic_Picoplankton_Biomass.eml12. Dec. 2019 21:05emlODC-By Download

    Data files (excel)

    TitelCreateFiletypeActions
    Dataset_2_AutotrophicPicoplankton_Biomass_LakeConstance_Depth_Integrated.xlsx 21. Mar. 2018 12:42 datatable: .xlsx Download
    Dataset_1_AutotrophicPicoplankton_Biomass_LakeConstance_Depth_Resolved.xlsx 21. Mar. 2018 12:42 datatable: .xlsx Download

    You are about to leaving FRED and visting a third party website. We are not responsible for the content or availability of linked sites.

    To remain on our site, click Cancel.

    Parsing data File

    Estimated Time:

    Why does it take so much time?

    While parsing a file, the database has to perform various tasks, some of them needs a lot of CPU and memory for larger files.

    • preprocessing: means automatic detection of headlines, table body, format values or csv-separators
    • copying: means read the file cell by cell and copy all elements to the database. During this format settings can be calculated (for example iso-time)
    • analyzing: check out for different data types (can be time, numeric or text)