Tags


Click a tag to remove it from package

Edit Species Groups of Package

Edit Parameter of Package

Edit DOI Package

Choose a project for this package

FRED
  • Contact
  • GDPR policy
  • Imprint
  • About
  • Sign Up
  • Login
  • SEARCH
  • Search and find
  • Packages
  • Map
  • By Category ...
    • Study sites
    • Sampling locations
    • Parameters
    • Sampling types
    • Species groups
    • Current DOIs

172 Kalksee insitu

Title
Kalksee insitu
Period
1992-04-30 till 2002-12-03
Period length
10 years 7 months 3 days
Sampling interval
28 days
Species Groups
Study site
Kalksee
Sampling locations
Kalksee
location
52.45580, 13.76746
location
code
233
description
Parameters

physics:

secchi depth
name
secchi depth
description

synonyms
Sichttiefe, Transparancy
water temperature
name
water temperature
description

determination by temperature-probe

synonyms
water temp, Wassertemperatur

chemistry:

electrical conductivity
name
electrical conductivity
description

determination by conductivity-probe

synonyms
elektrische Leitfähigkeit, Salinität, Salzgehalt, Konduktivität, cond
O, oxygen concentration
name
O, oxygen concentration
description

determination by oxygen-probe

synonyms
Sauerstoffkonzentration
O, oxygen saturation
name
O, oxygen saturation
description

determination by oxygen-probe

synonyms
Sauerstoffsättigung
pH
name
pH
description

pH-probe determination

Contact
Thomas Hintze
Licence for data
All rights reserved. Please send a request to Thomas Hintze if you like to use this data. Mind our data policy: IGB Data Policy

Data files (e.g. excel)

TitlecreatedFiletypeActions
233-Kalksee.csv 12. Jun. 2018 12:56 datatable: .csv Download

Machine Readable Metadata Files

FRED provides all metadata of this package in a maschine readable format. There is a pure XML file and one EML file in Ecological Metadata Language. Both files are published under the free CC BY 4.0 Licence.

  • Kalksee_insitu.xml
  • Kalksee_insitu.eml

You are about to leaving FRED and visting a third party website. We are not responsible for the content or availability of linked sites.

To remain on our site, click Cancel.

Parsing data File

Estimated Time:

Why does it take so much time?

While parsing a file, the database has to perform various tasks, some of them needs a lot of CPU and memory for larger files.

  • preprocessing: means automatic detection of headlines, table body, format values or csv-separators
  • copying: means read the file cell by cell and copy all elements to the database. During this format settings can be calculated (for example iso-time)
  • analyzing: check out for different data types (can be time, numeric or text)