‹ › ×

    FRED
    • Contact
    • GDPR policy
    • Imprint
    • About
    • Sign Up
    • Login
    • Data
    • Study sites
    • Sampling sites
    • Parameters
    • Sampling types
    • Map
    • Current DOIs

    171 Werlsee insitu

    Title
    Werlsee insitu
    Period
    1992-05-14 till 1993-12-15
    Period length
    1 year 7 mons 1 day
    Sampling interval
    28 days
    Study site
    Werlsee
    Sampling sites
    Werlsee
    location
    52.42000, 13.81300
    location
    code
    232
    description
    Parameters

    physics:

    secchi depth
    name
    secchi depth
    description

    synonyms
    Sichttiefe, Transparancy
    water temperature
    name
    water temperature
    description

    Wassertemperatur

    synonyms
    water temp, Wassertemperatur

    chemistry:

    electrical conductivity
    name
    electrical conductivity
    synonyms
    elektrische Leitfähigkeit, Salinität, Salzgehalt, Konduktivität, cond
    oxygen concentration
    name
    oxygen concentration
    synonyms
    Sauerstoffkonzentration
    oxygen saturation
    name
    oxygen saturation
    synonyms
    Sauerstoffsättigung
    pH
    name
    pH
    Contact
    Thomas Hintze
    Licence for data
    All rights reserved. Please send a request to Thomas Hintze if you like to use this data. Mind our data policy: IGB Data Policy

    Metadata files

    TitelUpload dateFiletypeLicenceActions
    General_MetadataWerlsee_insitu.xml12. Dec. 2019 19:33xmlODC-By Download
    General_MetadataWerlsee_insitu.eml12. Dec. 2019 19:33emlODC-By Download

    Data files (excel)

    TitelCreateFiletypeActions
    232-Werlsee.csv 12. Jun. 2018 12:49 datatable: .csv Download

    You are about to leaving FRED and visting a third party website. We are not responsible for the content or availability of linked sites.

    To remain on our site, click Cancel.

    Parsing data File

    Estimated Time:

    Why does it take so much time?

    While parsing a file, the database has to perform various tasks, some of them needs a lot of CPU and memory for larger files.

    • preprocessing: means automatic detection of headlines, table body, format values or csv-separators
    • copying: means read the file cell by cell and copy all elements to the database. During this format settings can be calculated (for example iso-time)
    • analyzing: check out for different data types (can be time, numeric or text)