‹ › ×

    FRED
    • Contact
    • GDPR policy
    • Imprint
    • About
    • Sign Up
    • Login
    • SEARCH
    • Search and find
    • Packages
    • Map
    • By Category ...
      • Study sites
      • Sampling sites
      • Parameters
      • Sampling types
      • Species groups
      • Current DOIs

    223 Demnitzer Mühlenfließ im Abfluss des Niedermoores südwestlich Arensdorf (Upstallgraben)

    Title
    Demnitzer Mühlenfließ im Abfluss des Niedermoores südwestlich Arensdorf (Upstallgraben)
    Study site
    Demnitzer Mühlenfließ
    Sampling sites
    Demnitzer Mühlenfließ DM25
    location
    52.404217, 14.231371
    location
    type
    running water / drainage ditch (Entwässerungsgraben)
    state
    code
    DM25
    description

    Demnitzer Mühlenfließ im Abfluss des Niedermoores südwestlich Arensdorf (Upstallgraben)

    Contact
    Thomas Rossoll
    Data usage
    Please send a request to Thomas Rossoll if you like to use this data. Mind our data policy: IGB Data Policy
    Project

    Metadata files

    TitelUpload dateFiletypeLicenceActions
    General_Metadata_Demnitzer_Mühlenfließ_im_Abfluss_des_Niedermoores_südwestlich_Arensdorf_(Upstallgraben)_.xml15. Jan. 2021 21:43xmlODC-By Download
    General_Metadata_Demnitzer_Mühlenfließ_im_Abfluss_des_Niedermoores_südwestlich_Arensdorf_(Upstallgraben)_.eml15. Jan. 2021 21:43emlODC-By Download

    You are about to leaving FRED and visting a third party website. We are not responsible for the content or availability of linked sites.

    To remain on our site, click Cancel.

    Parsing data File

    Estimated Time:

    Why does it take so much time?

    While parsing a file, the database has to perform various tasks, some of them needs a lot of CPU and memory for larger files.

    • preprocessing: means automatic detection of headlines, table body, format values or csv-separators
    • copying: means read the file cell by cell and copy all elements to the database. During this format settings can be calculated (for example iso-time)
    • analyzing: check out for different data types (can be time, numeric or text)